

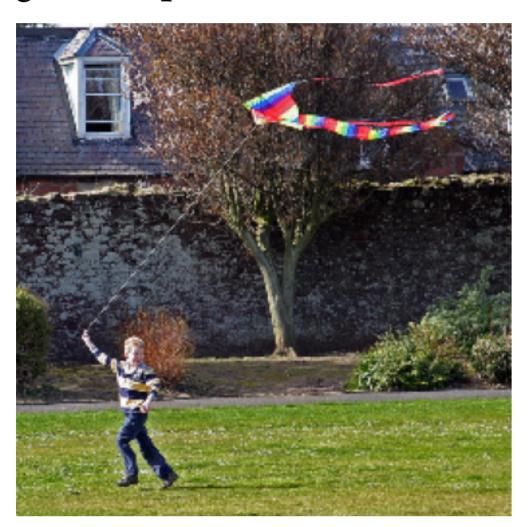
High Dimensional Signal Processing Research Group

Optics Lens Design For Privacy-Preserving Scene Captioning

Motivation

Image captioning task consists on use traditional images to generate a natural language description of the scene

a girl stands on the beach with a horse



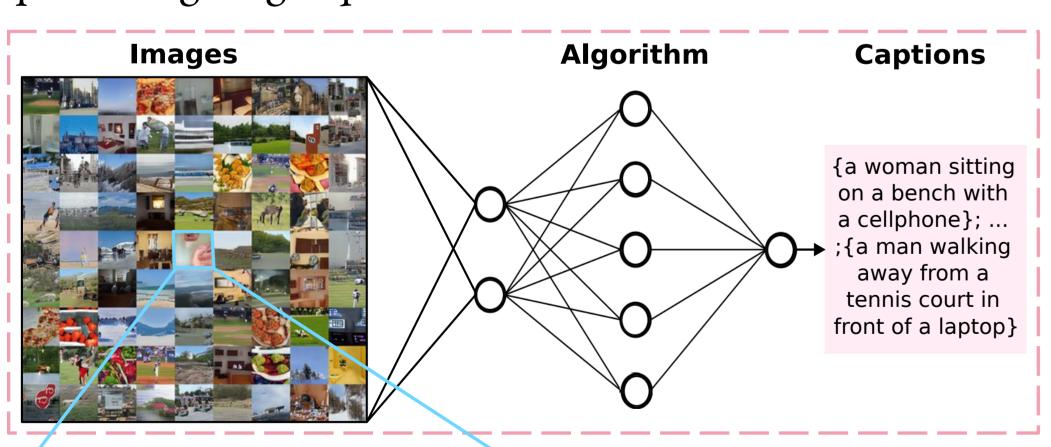
a little boy flying his kite in the yard

Image captioning is applicable in various scenarios:

- usage in virtual assistants
- support of the disabled

Traditional Image Captioning **Computational Approaches**

Previous works have addressed the image captioning problem from different approaches. Most of them use RNN and LSTM networks for processing long sequences.



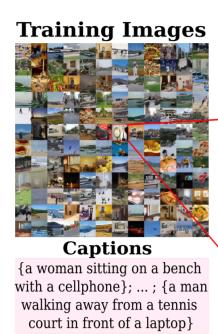
In traditional image captioning pipelines, cameras are used to acquire high-fidelity images.

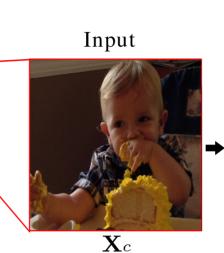
However, the acquired images may contain privacy-sensitive data. <u>Paula Arguello</u>¹, Jhon Lopez¹, Carlos Hinojosa¹ Henry Arguello¹ ¹Universidad Industrial de Santander

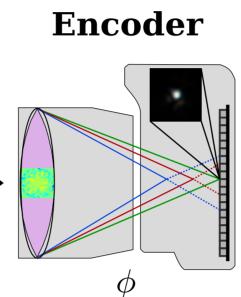
paula2191444@correo.uis.edu.co

Model and Approach

We propose a Encoder-Decoder end-to-end arquitecture to learns optics by backpropagating the gradients from the captioning network decoder to the optics layer

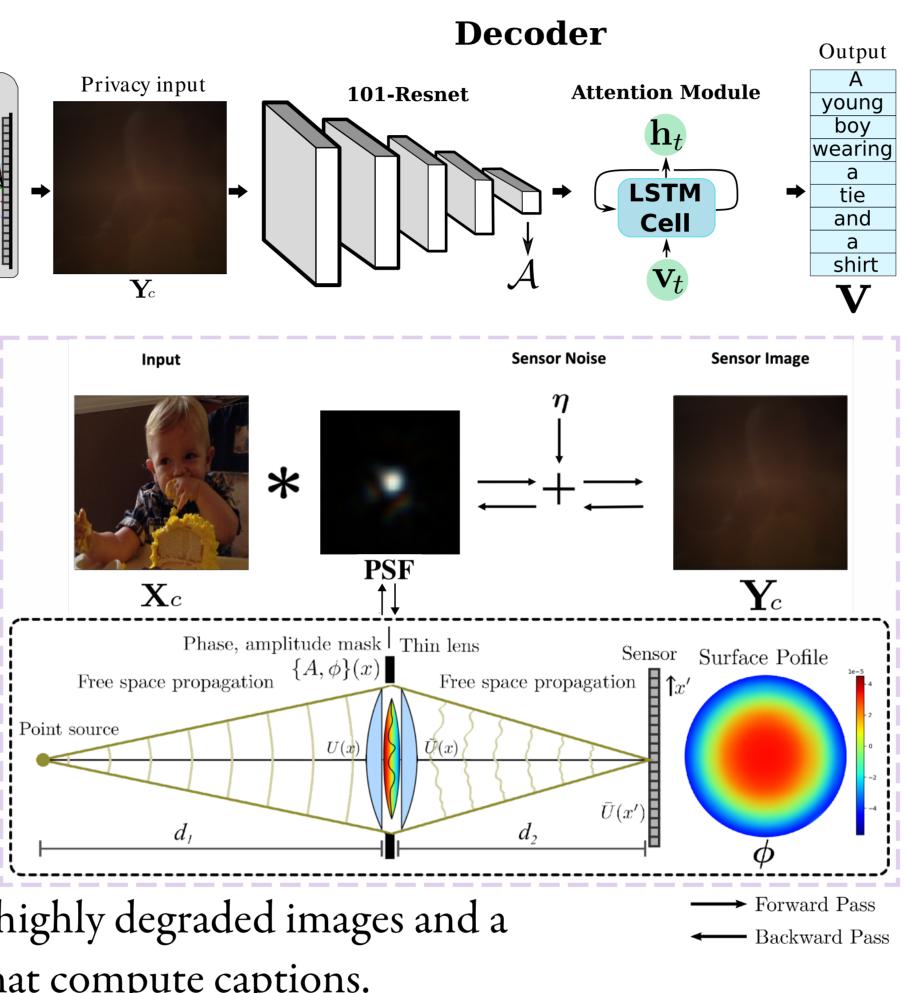






• We rely on the converse approach of deep optics: We add aberrations to the lens to obtain privacy protection and jointly perform IC.

• Our optimization process has two parts: an optical encoder, which provides hardware-level privacy protection by degrading the image quality, and a decoder with a



CNN that learns features from the highly degraded images and a LSTM with an attention module that compute captions.

End-to-end Optimization

Formally, we formulate our optimization problem by combining the two goals: to acquire privacy-preserving images and to perform HPE with high accuracy.

$$\mathcal{L} = -\log(p(\mathbf{v} \mid \mathcal{A})) + \lambda \sum_{i=1}^{L} \left(1 - \sum_{t=1}^{C} \boldsymbol{\theta}_{ti}\right)^{2} - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_{c})}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_{i}\right)} \mathbf{g}_{c} + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^{2} - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_{c})}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_{i}\right)} \mathbf{g}_{c} + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^{2} - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_{c})}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_{i}\right)} \mathbf{g}_{c} + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^{2} - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_{c})}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_{i}\right)} \mathbf{g}_{c} + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^{2} - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_{c})}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_{i}\right)} \mathbf{g}_{c} + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^{2} - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_{c})}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_{i}\right)} \mathbf{g}_{c} + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^{2} - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_{c})}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_{i}\right)} \mathbf{g}_{c} + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^{2} + \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_{c})}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_{i}\right)} \mathbf{g}_{c} + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^{2} + \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_{c})}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_{i}\right)} \mathbf{g}_{c} + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^{2} + \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_{c})}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_{i}\right)} \mathbf{g}_{c} + \sum_{c=1}^{C} \exp\left(\sum_{i=1}^{C} \mathbf{v}_{i}\right)^{2} + \sum_{c$$

Datasets and Metrics

We train our proposed end-to-end approach on the COCO 2014 dataset and evaluate our approach on the val2014 set.

Captioning		Face Recognition	Ima
	To quantitatively evaluate	We implement the ArcFace	To measu
	captions, we use the	network to measure privacy.	degradati
	standard BLEU and	We train ArcFace on three	peak-sign
	Meteor metrics. With	face recognition datasets.	(\mathbf{PSNR}) a
	values closer to 100	We measure its performance	similarity
	representing more	in terms of the area under	(SSIM). V
	similar texts.	the curve (AUC) of the	achieve lo
		ROC.	SSIM valu

$$\frac{1}{J}\sum_{l=1}^{3} \|\mathbf{Y}_{\ell} - \mathbf{X}_{\ell}\|^2 \right)$$

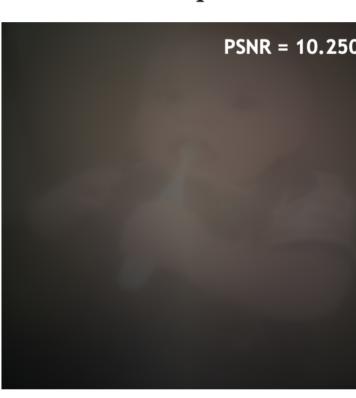
nage Quality ure image tion, we use the nal-to-noise ratio and the structural y index measure We expect to lower PSNR and lues.

Qualitative Results on Example COCO Images

a man sitting at a table in a wheelchair while on a phone

a child holds a toothbrush in their hand

a person in a wheelchair talking on a telephone



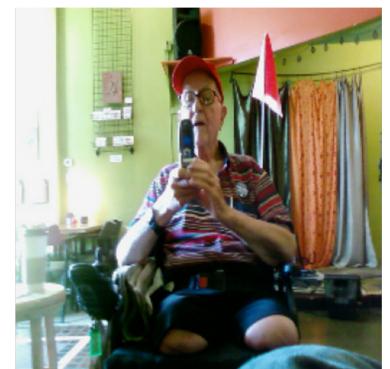
a baby holding a toothbrush in its mouth

1. Non-privacy: We trained the face detection model from scratch with original images resized. 2. Training: We trained the face detection model from scratch using blurred images. 3. Pre-trained: We evaluated the previous experiment (Non-privacy) on distorted images 4. Fine-tuning: We perform fine-tuning on the Non-privacy experiment using the blurred images.

Quantitative Experiments: Comparison with Prior Works

	Method	Bleu-1	Bleu-2	Bleu-3	Bleu-4	Meteor
•	BRNN	64.2	45.1	30.3	20.1	19.5
acy	NIC	66.6	46.1	32.9	24.6	23.7
Privacy	CutMix	64.2	-	-	24.9	23.1
١	AAIC	71.0	-	-	27.7	23.8
Non	Hard Attn	71.8	50.4	35.7	25.0	23.0
	2PSC-w	72.1	54.8	40.4	29.6	29.2
cy	2PSC	70.7	53.5	39.4	28.9	29.0
Privacy	Defocus	56.1	36.7	24.2	16.3	20.4
PI	Low-Res	57.3	37.8	25.2	17.4	20.9

Project Page



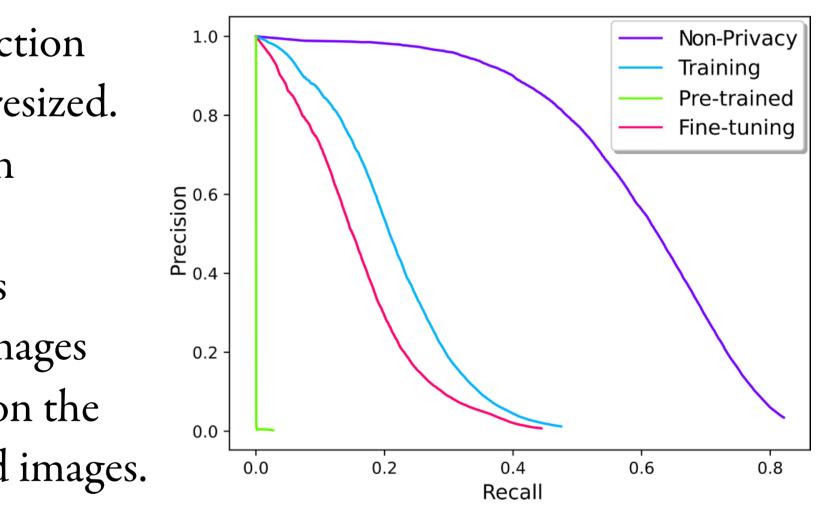
an elderly man looks at a cell phone

two children standing at the sink brushing their teeth

an old man looks at a cell phone screen

a little girl is brushing her teeth in a bathroom

Experiments: Ablation Studies



We compare our method (2PSC) against two traditional privacy-preserving approaches: Defocus and Low-Resoluion cameras.