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Image Captioning

people are playing volleyball on 
the sandy beach 

a large giraffe standing 
next to a forest

a man that is next to a child 
with bread
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Related Problem

Certain images may include content that should be private. 
Sensitive content: Faces, Medical Eviroments, Elders, Toddlers.
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Not-private

Traditional Cameras

a baby is eating a piece of cake
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a toddler is eating a cake

Private

Our Approach
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Not-private Private

Traditional Cameras Our Approach

Let’s perform image
captioning!
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Traditional Approaches

Traditional camera Image Caption NetworkScene Output
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Proposed Method

Scene Privacy Input OutputEncoder Decoder
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Optical Encoder
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Our optical system consists of a convex thin lens 
and a refractive optical  element (freeform lens) 
add-on.

Optical Encoder
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The PSF can be manipulated by modifying the 
surface profile of the freeform lens.

Optical Encoder
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Optical Encoder

We optimize the PSF by learning to add optical aberrations to the system. 

* We learn

𝛼1 𝛼2 𝛼j 𝛼q

Surface  Profile
Zernike Polynomials
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Decoder: Recurrent Neural Network

2.2.2. LSTM network

Similar than the work proposed by Kelvin et.al. [1], we use
LSTM network with attention to generate a caption by com-
puting one word at each time step t conditioned on a context
vector ẑt, the previous hidden state ht�1, and the previously
generated word vt�1. The context vector ẑt is a dynamic rep-
resentation of the most important part of the image at time t
and is obtained from the feature vectors ai, and a function  
with parameters ✓t, i.e., ẑt =  (a1, · · · , aL;✓t).The LSTM
network can be described as
it = � (WiEvt�1 +Uiht�1 +Qiẑt + bi) ,

ft = � (WfEvt�1 +Ufht�1 +Qf ẑt + bf ) ,

ct = ftct�1 + it tanh (WcEvt�1 +Ucht�1 +Qcẑt + bc) ,

ot = � (WoEvt�1 +Uoht�1 +Qoẑt + bo) ,

ht = ot tanh (ct) ,

where it, ft, ct, ot, and ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. Additionally,
the Ws,Us,Qs 2 Rn⇥m terms denote learned weight matri-
ces and the bs 2 Rn terms denote bias vectors. The sub-index
s = {i, f, c, o} indicates which variable is computed from the
learned matrices and biases (e.g., Ui is used to compute the
input). E 2 Rm⇥K is the embedding matrix, m and n denote
the embedding and LSTM dimensionality, respectively, and
K is the vocabulary size. � is the logistic sigmoid activation
and tanh(·) represents hyperbolic tangent activation function.
For more details, we refer the interested reader to [1].

2.3. Loss Function
Two important aspects were considered to find an appropriate
cost function for our approach. The first is maintaining the
visual image distortion, and the second is the performance at
word generation. Then, our loss function is defined as:

L = � log(p(v | A)) + �
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where C represents the length of the caption, g 2 RC repre-
sents the ground truth caption, and J is the total image pixels
for all channels. The first two terms are a doubly stochastic
regularization to encourage the model to pay equal attention
to every part of the blurred image [1]. The third term is the
multi-class cross-entropy loss to generate a correct sequence
of words. The last term uses the mean squared error to max-
imize the difference between original X` and sensor Y` im-
ages to achieve private images.

2.4. Training details
We used the Common Objects in Context (COCO) 2014
dataset [13] for training (83K images), validation (41K im-
ages), and testing (41K images). We trained our end-to-end
model on an Nvidia Geforce RTX 3090 during 90 epochs and
a batch size of 32. We used the Adam optimizer in all the
models and learning rates of 1e� 02, 1e� 04, 5e� 04 for the
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Table 1: Comparisons on the COCO test set. B-# denotes the Bleu
metrics, and M is the Meteor metric. Results with (-) were not re-
ported by authors in the corresponding papers.

optical encoder, the feature extraction layers of the decoder,
and the LSTM network, respectively.

3. RESULTS
This section shows the obtained results from simulations of
our proposed privacy-preserving image captioning approach
over the COCO test set. In general, visual privacy methods
are not well explored in the literature. Therefore, to com-
pare our method, we adapt the ideas of using low-resolution
cameras [14] and cameras with a defocus lens [15] to provide
visual privacy protection. Specifically, we change the encoder
in our proposed end-to-end architecture (Fig. 1) with a low-
resolution camera, which resizes the input image to 16 ⇥ 16
pixels, and a defocus lens, respectively.
Qualitative Results. Figure 3 shows a visual comparison of
our proposed method using the optimized lens against from
defocus lens and low-resolution cameras. The figure shows
the image and caption outputs of each model. Additionally,
we compute and show the PSNR between the original and
distorted images by different approaches. As observed, in all
approaches, the content of the images cannot be easily recog-
nized; however, our method achieves the best description of
the scene and, as expected, minimum PSNR.
To quantitatively evaluate our proposed approach, we use
the standard BLEU [19] and Meteor metrics. BLEU-1,2,3,4
scores (values between 0 and 1) indicate how similar the can-
didate text is to the reference texts, with values closer to 1
representing more similar texts. The indexes {1,2,3,4} denote
the evaluation of the precision for a contiguous sequence of ñ
items from a given sample (ñ-grams), where ñ 2 {1, · · · , 4}.
Meteor metric [20] scores output captions model by aligning
them to a set of references. Alignments are based on exact,
synonym, and paraphrase matches among words and phrases.
Quantitative Results. Table 1 shows the quantitative re-
sults where we compare our model against the following
non-privacy methods, i.e., these methods use cameras with
standard lens: BRNN [16], Google NIC [2], Cutmix [17],
AAIC [18], the LSTM network model Hard-Attention [1],
2PSC-w (our proposed model without the optimized lens).
This table also provides a quantitative comparison with the
privacy methods explained above: defocus and low-resolution
cameras. The bold values in Table 1 represent the best re-
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ft = � (WfEvt�1 +Ufht�1 +Qf ẑt + bf ) ,
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sents the ground truth caption, and J is the total image pixels
for all channels. The first two terms are a doubly stochastic
regularization to encourage the model to pay equal attention
to every part of the blurred image [1]. The third term is the
multi-class cross-entropy loss to generate a correct sequence
of words. The last term uses the mean squared error to max-
imize the difference between original X` and sensor Y` im-
ages to achieve private images.
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where C represents the length of the caption, g 2 RC repre-
sents the ground truth caption, and J is the total image pixels
for all channels. The first two terms are a doubly stochastic
regularization to encourage the model to pay equal attention
to every part of the blurred image [1]. The third term is the
multi-class cross-entropy loss to generate a correct sequence
of words. The last term uses the mean squared error to max-
imize the difference between original X` and sensor Y` im-
ages to achieve private images.

2.4. Training details
We used the Common Objects in Context (COCO) 2014
dataset [13] for training (83K images), validation (41K im-
ages), and testing (41K images). We trained our end-to-end
model on an Nvidia Geforce RTX 3090 during 90 epochs and
a batch size of 32. We used the Adam optimizer in all the
models and learning rates of 1e� 02, 1e� 04, 5e� 04 for the
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put and hidden state of the LSTM, respectively. Additionally,
the Ws,Us,Qs 2 Rn⇥m terms denote learned weight matri-
ces and the bs 2 Rn terms denote bias vectors. The sub-index
s = {i, f, c, o} indicates which variable is computed from the
learned matrices and biases (e.g., Ui is used to compute the
input). E 2 Rm⇥K is the embedding matrix, m and n denote
the embedding and LSTM dimensionality, respectively, and
K is the vocabulary size. � is the logistic sigmoid activation
and tanh(·) represents hyperbolic tangent activation function.
For more details, we refer the interested reader to [1].

2.3. Loss Function
Two important aspects were considered to find an appropriate
cost function for our approach. The first is maintaining the
visual image distortion, and the second is the performance at
word generation. Then, our loss function is defined as:

L = � log(p(v | A)) + �
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where C represents the length of the caption, g 2 RC repre-
sents the ground truth caption, and J is the total image pixels
for all channels. The first two terms are a doubly stochastic
regularization to encourage the model to pay equal attention
to every part of the blurred image [1]. The third term is the
multi-class cross-entropy loss to generate a correct sequence
of words. The last term uses the mean squared error to max-
imize the difference between original X` and sensor Y` im-
ages to achieve private images.

2.4. Training details
We used the Common Objects in Context (COCO) 2014
dataset [13] for training (83K images), validation (41K im-
ages), and testing (41K images). We trained our end-to-end
model on an Nvidia Geforce RTX 3090 during 90 epochs and
a batch size of 32. We used the Adam optimizer in all the
models and learning rates of 1e� 02, 1e� 04, 5e� 04 for the
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Table 1: Comparisons on the COCO test set. B-# denotes the Bleu
metrics, and M is the Meteor metric. Results with (-) were not re-
ported by authors in the corresponding papers.

optical encoder, the feature extraction layers of the decoder,
and the LSTM network, respectively.

3. RESULTS
This section shows the obtained results from simulations of
our proposed privacy-preserving image captioning approach
over the COCO test set. In general, visual privacy methods
are not well explored in the literature. Therefore, to com-
pare our method, we adapt the ideas of using low-resolution
cameras [14] and cameras with a defocus lens [15] to provide
visual privacy protection. Specifically, we change the encoder
in our proposed end-to-end architecture (Fig. 1) with a low-
resolution camera, which resizes the input image to 16 ⇥ 16
pixels, and a defocus lens, respectively.
Qualitative Results. Figure 3 shows a visual comparison of
our proposed method using the optimized lens against from
defocus lens and low-resolution cameras. The figure shows
the image and caption outputs of each model. Additionally,
we compute and show the PSNR between the original and
distorted images by different approaches. As observed, in all
approaches, the content of the images cannot be easily recog-
nized; however, our method achieves the best description of
the scene and, as expected, minimum PSNR.
To quantitatively evaluate our proposed approach, we use
the standard BLEU [19] and Meteor metrics. BLEU-1,2,3,4
scores (values between 0 and 1) indicate how similar the can-
didate text is to the reference texts, with values closer to 1
representing more similar texts. The indexes {1,2,3,4} denote
the evaluation of the precision for a contiguous sequence of ñ
items from a given sample (ñ-grams), where ñ 2 {1, · · · , 4}.
Meteor metric [20] scores output captions model by aligning
them to a set of references. Alignments are based on exact,
synonym, and paraphrase matches among words and phrases.
Quantitative Results. Table 1 shows the quantitative re-
sults where we compare our model against the following
non-privacy methods, i.e., these methods use cameras with
standard lens: BRNN [16], Google NIC [2], Cutmix [17],
AAIC [18], the LSTM network model Hard-Attention [1],
2PSC-w (our proposed model without the optimized lens).
This table also provides a quantitative comparison with the
privacy methods explained above: defocus and low-resolution
cameras. The bold values in Table 1 represent the best re-
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2.2.2. LSTM network

Similar than the work proposed by Kelvin et.al. [1], we use
LSTM network with attention to generate a caption by com-
puting one word at each time step t conditioned on a context
vector ẑt, the previous hidden state ht�1, and the previously
generated word vt�1. The context vector ẑt is a dynamic rep-
resentation of the most important part of the image at time t
and is obtained from the feature vectors ai, and a function  
with parameters ✓t, i.e., ẑt =  (a1, · · · , aL;✓t).The LSTM
network can be described as
it = � (WiEvt�1 +Uiht�1 +Qiẑt + bi) ,
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ot = � (WoEvt�1 +Uoht�1 +Qoẑt + bo) ,
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where it, ft, ct, ot, and ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. Additionally,
the Ws,Us,Qs 2 Rn⇥m terms denote learned weight matri-
ces and the bs 2 Rn terms denote bias vectors. The sub-index
s = {i, f, c, o} indicates which variable is computed from the
learned matrices and biases (e.g., Ui is used to compute the
input). E 2 Rm⇥K is the embedding matrix, m and n denote
the embedding and LSTM dimensionality, respectively, and
K is the vocabulary size. � is the logistic sigmoid activation
and tanh(·) represents hyperbolic tangent activation function.
For more details, we refer the interested reader to [1].

2.3. Loss Function
Two important aspects were considered to find an appropriate
cost function for our approach. The first is maintaining the
visual image distortion, and the second is the performance at
word generation. Then, our loss function is defined as:
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where C represents the length of the caption, g 2 RC repre-
sents the ground truth caption, and J is the total image pixels
for all channels. The first two terms are a doubly stochastic
regularization to encourage the model to pay equal attention
to every part of the blurred image [1]. The third term is the
multi-class cross-entropy loss to generate a correct sequence
of words. The last term uses the mean squared error to max-
imize the difference between original X` and sensor Y` im-
ages to achieve private images.

2.4. Training details
We used the Common Objects in Context (COCO) 2014
dataset [13] for training (83K images), validation (41K im-
ages), and testing (41K images). We trained our end-to-end
model on an Nvidia Geforce RTX 3090 during 90 epochs and
a batch size of 32. We used the Adam optimizer in all the
models and learning rates of 1e� 02, 1e� 04, 5e� 04 for the
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and the LSTM network, respectively.

3. RESULTS
This section shows the obtained results from simulations of
our proposed privacy-preserving image captioning approach
over the COCO test set. In general, visual privacy methods
are not well explored in the literature. Therefore, to com-
pare our method, we adapt the ideas of using low-resolution
cameras [14] and cameras with a defocus lens [15] to provide
visual privacy protection. Specifically, we change the encoder
in our proposed end-to-end architecture (Fig. 1) with a low-
resolution camera, which resizes the input image to 16 ⇥ 16
pixels, and a defocus lens, respectively.
Qualitative Results. Figure 3 shows a visual comparison of
our proposed method using the optimized lens against from
defocus lens and low-resolution cameras. The figure shows
the image and caption outputs of each model. Additionally,
we compute and show the PSNR between the original and
distorted images by different approaches. As observed, in all
approaches, the content of the images cannot be easily recog-
nized; however, our method achieves the best description of
the scene and, as expected, minimum PSNR.
To quantitatively evaluate our proposed approach, we use
the standard BLEU [19] and Meteor metrics. BLEU-1,2,3,4
scores (values between 0 and 1) indicate how similar the can-
didate text is to the reference texts, with values closer to 1
representing more similar texts. The indexes {1,2,3,4} denote
the evaluation of the precision for a contiguous sequence of ñ
items from a given sample (ñ-grams), where ñ 2 {1, · · · , 4}.
Meteor metric [20] scores output captions model by aligning
them to a set of references. Alignments are based on exact,
synonym, and paraphrase matches among words and phrases.
Quantitative Results. Table 1 shows the quantitative re-
sults where we compare our model against the following
non-privacy methods, i.e., these methods use cameras with
standard lens: BRNN [16], Google NIC [2], Cutmix [17],
AAIC [18], the LSTM network model Hard-Attention [1],
2PSC-w (our proposed model without the optimized lens).
This table also provides a quantitative comparison with the
privacy methods explained above: defocus and low-resolution
cameras. The bold values in Table 1 represent the best re-
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Similar than the work proposed by Kelvin et.al. [1], we use
LSTM network with attention to generate a caption by com-
puting one word at each time step t conditioned on a context
vector ẑt, the previous hidden state ht�1, and the previously
generated word vt�1. The context vector ẑt is a dynamic rep-
resentation of the most important part of the image at time t
and is obtained from the feature vectors ai, and a function  
with parameters ✓t, i.e., ẑt =  (a1, · · · , aL;✓t).The LSTM
network can be described as
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ot = � (WoEvt�1 +Uoht�1 +Qoẑt + bo) ,
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where it, ft, ct, ot, and ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. Additionally,
the Ws,Us,Qs 2 Rn⇥m terms denote learned weight matri-
ces and the bs 2 Rn terms denote bias vectors. The sub-index
s = {i, f, c, o} indicates which variable is computed from the
learned matrices and biases (e.g., Ui is used to compute the
input). E 2 Rm⇥K is the embedding matrix, m and n denote
the embedding and LSTM dimensionality, respectively, and
K is the vocabulary size. � is the logistic sigmoid activation
and tanh(·) represents hyperbolic tangent activation function.
For more details, we refer the interested reader to [1].

2.3. Loss Function
Two important aspects were considered to find an appropriate
cost function for our approach. The first is maintaining the
visual image distortion, and the second is the performance at
word generation. Then, our loss function is defined as:
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where C represents the length of the caption, g 2 RC repre-
sents the ground truth caption, and J is the total image pixels
for all channels. The first two terms are a doubly stochastic
regularization to encourage the model to pay equal attention
to every part of the blurred image [1]. The third term is the
multi-class cross-entropy loss to generate a correct sequence
of words. The last term uses the mean squared error to max-
imize the difference between original X` and sensor Y` im-
ages to achieve private images.

2.4. Training details
We used the Common Objects in Context (COCO) 2014
dataset [13] for training (83K images), validation (41K im-
ages), and testing (41K images). We trained our end-to-end
model on an Nvidia Geforce RTX 3090 during 90 epochs and
a batch size of 32. We used the Adam optimizer in all the
models and learning rates of 1e� 02, 1e� 04, 5e� 04 for the
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3. RESULTS
This section shows the obtained results from simulations of
our proposed privacy-preserving image captioning approach
over the COCO test set. In general, visual privacy methods
are not well explored in the literature. Therefore, to com-
pare our method, we adapt the ideas of using low-resolution
cameras [14] and cameras with a defocus lens [15] to provide
visual privacy protection. Specifically, we change the encoder
in our proposed end-to-end architecture (Fig. 1) with a low-
resolution camera, which resizes the input image to 16 ⇥ 16
pixels, and a defocus lens, respectively.
Qualitative Results. Figure 3 shows a visual comparison of
our proposed method using the optimized lens against from
defocus lens and low-resolution cameras. The figure shows
the image and caption outputs of each model. Additionally,
we compute and show the PSNR between the original and
distorted images by different approaches. As observed, in all
approaches, the content of the images cannot be easily recog-
nized; however, our method achieves the best description of
the scene and, as expected, minimum PSNR.
To quantitatively evaluate our proposed approach, we use
the standard BLEU [19] and Meteor metrics. BLEU-1,2,3,4
scores (values between 0 and 1) indicate how similar the can-
didate text is to the reference texts, with values closer to 1
representing more similar texts. The indexes {1,2,3,4} denote
the evaluation of the precision for a contiguous sequence of ñ
items from a given sample (ñ-grams), where ñ 2 {1, · · · , 4}.
Meteor metric [20] scores output captions model by aligning
them to a set of references. Alignments are based on exact,
synonym, and paraphrase matches among words and phrases.
Quantitative Results. Table 1 shows the quantitative re-
sults where we compare our model against the following
non-privacy methods, i.e., these methods use cameras with
standard lens: BRNN [16], Google NIC [2], Cutmix [17],
AAIC [18], the LSTM network model Hard-Attention [1],
2PSC-w (our proposed model without the optimized lens).
This table also provides a quantitative comparison with the
privacy methods explained above: defocus and low-resolution
cameras. The bold values in Table 1 represent the best re-
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Similar than the work proposed by Kelvin et.al. [1], we use
LSTM network with attention to generate a caption by com-
puting one word at each time step t conditioned on a context
vector ẑt, the previous hidden state ht�1, and the previously
generated word vt�1. The context vector ẑt is a dynamic rep-
resentation of the most important part of the image at time t
and is obtained from the feature vectors ai, and a function  
with parameters ✓t, i.e., ẑt =  (a1, · · · , aL;✓t).The LSTM
network can be described as
it = � (WiEvt�1 +Uiht�1 +Qiẑt + bi) ,

ft = � (WfEvt�1 +Ufht�1 +Qf ẑt + bf ) ,

ct = ftct�1 + it tanh (WcEvt�1 +Ucht�1 +Qcẑt + bc) ,

ot = � (WoEvt�1 +Uoht�1 +Qoẑt + bo) ,

ht = ot tanh (ct) ,

where it, ft, ct, ot, and ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. Additionally,
the Ws,Us,Qs 2 Rn⇥m terms denote learned weight matri-
ces and the bs 2 Rn terms denote bias vectors. The sub-index
s = {i, f, c, o} indicates which variable is computed from the
learned matrices and biases (e.g., Ui is used to compute the
input). E 2 Rm⇥K is the embedding matrix, m and n denote
the embedding and LSTM dimensionality, respectively, and
K is the vocabulary size. � is the logistic sigmoid activation
and tanh(·) represents hyperbolic tangent activation function.
For more details, we refer the interested reader to [1].

2.3. Loss Function
Two important aspects were considered to find an appropriate
cost function for our approach. The first is maintaining the
visual image distortion, and the second is the performance at
word generation. Then, our loss function is defined as:
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where C represents the length of the caption, g 2 RC repre-
sents the ground truth caption, and J is the total image pixels
for all channels. The first two terms are a doubly stochastic
regularization to encourage the model to pay equal attention
to every part of the blurred image [1]. The third term is the
multi-class cross-entropy loss to generate a correct sequence
of words. The last term uses the mean squared error to max-
imize the difference between original X` and sensor Y` im-
ages to achieve private images.

2.4. Training details
We used the Common Objects in Context (COCO) 2014
dataset [13] for training (83K images), validation (41K im-
ages), and testing (41K images). We trained our end-to-end
model on an Nvidia Geforce RTX 3090 during 90 epochs and
a batch size of 32. We used the Adam optimizer in all the
models and learning rates of 1e� 02, 1e� 04, 5e� 04 for the
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3. RESULTS
This section shows the obtained results from simulations of
our proposed privacy-preserving image captioning approach
over the COCO test set. In general, visual privacy methods
are not well explored in the literature. Therefore, to com-
pare our method, we adapt the ideas of using low-resolution
cameras [14] and cameras with a defocus lens [15] to provide
visual privacy protection. Specifically, we change the encoder
in our proposed end-to-end architecture (Fig. 1) with a low-
resolution camera, which resizes the input image to 16 ⇥ 16
pixels, and a defocus lens, respectively.
Qualitative Results. Figure 3 shows a visual comparison of
our proposed method using the optimized lens against from
defocus lens and low-resolution cameras. The figure shows
the image and caption outputs of each model. Additionally,
we compute and show the PSNR between the original and
distorted images by different approaches. As observed, in all
approaches, the content of the images cannot be easily recog-
nized; however, our method achieves the best description of
the scene and, as expected, minimum PSNR.
To quantitatively evaluate our proposed approach, we use
the standard BLEU [19] and Meteor metrics. BLEU-1,2,3,4
scores (values between 0 and 1) indicate how similar the can-
didate text is to the reference texts, with values closer to 1
representing more similar texts. The indexes {1,2,3,4} denote
the evaluation of the precision for a contiguous sequence of ñ
items from a given sample (ñ-grams), where ñ 2 {1, · · · , 4}.
Meteor metric [20] scores output captions model by aligning
them to a set of references. Alignments are based on exact,
synonym, and paraphrase matches among words and phrases.
Quantitative Results. Table 1 shows the quantitative re-
sults where we compare our model against the following
non-privacy methods, i.e., these methods use cameras with
standard lens: BRNN [16], Google NIC [2], Cutmix [17],
AAIC [18], the LSTM network model Hard-Attention [1],
2PSC-w (our proposed model without the optimized lens).
This table also provides a quantitative comparison with the
privacy methods explained above: defocus and low-resolution
cameras. The bold values in Table 1 represent the best re-
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Similar than the work proposed by Kelvin et.al. [1], we use
LSTM network with attention to generate a caption by com-
puting one word at each time step t conditioned on a context
vector ẑt, the previous hidden state ht�1, and the previously
generated word vt�1. The context vector ẑt is a dynamic rep-
resentation of the most important part of the image at time t
and is obtained from the feature vectors ai, and a function  
with parameters ✓t, i.e., ẑt =  (a1, · · · , aL;✓t).The LSTM
network can be described as
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where it, ft, ct, ot, and ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. Additionally,
the Ws,Us,Qs 2 Rn⇥m terms denote learned weight matri-
ces and the bs 2 Rn terms denote bias vectors. The sub-index
s = {i, f, c, o} indicates which variable is computed from the
learned matrices and biases (e.g., Ui is used to compute the
input). E 2 Rm⇥K is the embedding matrix, m and n denote
the embedding and LSTM dimensionality, respectively, and
K is the vocabulary size. � is the logistic sigmoid activation
and tanh(·) represents hyperbolic tangent activation function.
For more details, we refer the interested reader to [1].

2.3. Loss Function
Two important aspects were considered to find an appropriate
cost function for our approach. The first is maintaining the
visual image distortion, and the second is the performance at
word generation. Then, our loss function is defined as:
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where C represents the length of the caption, g 2 RC repre-
sents the ground truth caption, and J is the total image pixels
for all channels. The first two terms are a doubly stochastic
regularization to encourage the model to pay equal attention
to every part of the blurred image [1]. The third term is the
multi-class cross-entropy loss to generate a correct sequence
of words. The last term uses the mean squared error to max-
imize the difference between original X` and sensor Y` im-
ages to achieve private images.

2.4. Training details
We used the Common Objects in Context (COCO) 2014
dataset [13] for training (83K images), validation (41K im-
ages), and testing (41K images). We trained our end-to-end
model on an Nvidia Geforce RTX 3090 during 90 epochs and
a batch size of 32. We used the Adam optimizer in all the
models and learning rates of 1e� 02, 1e� 04, 5e� 04 for the
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optical encoder, the feature extraction layers of the decoder,
and the LSTM network, respectively.

3. RESULTS
This section shows the obtained results from simulations of
our proposed privacy-preserving image captioning approach
over the COCO test set. In general, visual privacy methods
are not well explored in the literature. Therefore, to com-
pare our method, we adapt the ideas of using low-resolution
cameras [14] and cameras with a defocus lens [15] to provide
visual privacy protection. Specifically, we change the encoder
in our proposed end-to-end architecture (Fig. 1) with a low-
resolution camera, which resizes the input image to 16 ⇥ 16
pixels, and a defocus lens, respectively.
Qualitative Results. Figure 3 shows a visual comparison of
our proposed method using the optimized lens against from
defocus lens and low-resolution cameras. The figure shows
the image and caption outputs of each model. Additionally,
we compute and show the PSNR between the original and
distorted images by different approaches. As observed, in all
approaches, the content of the images cannot be easily recog-
nized; however, our method achieves the best description of
the scene and, as expected, minimum PSNR.
To quantitatively evaluate our proposed approach, we use
the standard BLEU [19] and Meteor metrics. BLEU-1,2,3,4
scores (values between 0 and 1) indicate how similar the can-
didate text is to the reference texts, with values closer to 1
representing more similar texts. The indexes {1,2,3,4} denote
the evaluation of the precision for a contiguous sequence of ñ
items from a given sample (ñ-grams), where ñ 2 {1, · · · , 4}.
Meteor metric [20] scores output captions model by aligning
them to a set of references. Alignments are based on exact,
synonym, and paraphrase matches among words and phrases.
Quantitative Results. Table 1 shows the quantitative re-
sults where we compare our model against the following
non-privacy methods, i.e., these methods use cameras with
standard lens: BRNN [16], Google NIC [2], Cutmix [17],
AAIC [18], the LSTM network model Hard-Attention [1],
2PSC-w (our proposed model without the optimized lens).
This table also provides a quantitative comparison with the
privacy methods explained above: defocus and low-resolution
cameras. The bold values in Table 1 represent the best re-

2.2.2. LSTM network

Similar than the work proposed by Kelvin et.al. [1], we use
LSTM network with attention to generate a caption by com-
puting one word at each time step t conditioned on a context
vector ẑt, the previous hidden state ht�1, and the previously
generated word vt�1. The context vector ẑt is a dynamic rep-
resentation of the most important part of the image at time t
and is obtained from the feature vectors ai, and a function  
with parameters ✓t, i.e., ẑt =  (a1, · · · , aL;✓t).The LSTM
network can be described as
it = � (WiEvt�1 +Uiht�1 +Qiẑt + bi) ,

ft = � (WfEvt�1 +Ufht�1 +Qf ẑt + bf ) ,

ct = ftct�1 + it tanh (WcEvt�1 +Ucht�1 +Qcẑt + bc) ,

ot = � (WoEvt�1 +Uoht�1 +Qoẑt + bo) ,

ht = ot tanh (ct) ,

where it, ft, ct, ot, and ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. Additionally,
the Ws,Us,Qs 2 Rn⇥m terms denote learned weight matri-
ces and the bs 2 Rn terms denote bias vectors. The sub-index
s = {i, f, c, o} indicates which variable is computed from the
learned matrices and biases (e.g., Ui is used to compute the
input). E 2 Rm⇥K is the embedding matrix, m and n denote
the embedding and LSTM dimensionality, respectively, and
K is the vocabulary size. � is the logistic sigmoid activation
and tanh(·) represents hyperbolic tangent activation function.
For more details, we refer the interested reader to [1].

2.3. Loss Function
Two important aspects were considered to find an appropriate
cost function for our approach. The first is maintaining the
visual image distortion, and the second is the performance at
word generation. Then, our loss function is defined as:
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where C represents the length of the caption, g 2 RC repre-
sents the ground truth caption, and J is the total image pixels
for all channels. The first two terms are a doubly stochastic
regularization to encourage the model to pay equal attention
to every part of the blurred image [1]. The third term is the
multi-class cross-entropy loss to generate a correct sequence
of words. The last term uses the mean squared error to max-
imize the difference between original X` and sensor Y` im-
ages to achieve private images.

2.4. Training details
We used the Common Objects in Context (COCO) 2014
dataset [13] for training (83K images), validation (41K im-
ages), and testing (41K images). We trained our end-to-end
model on an Nvidia Geforce RTX 3090 during 90 epochs and
a batch size of 32. We used the Adam optimizer in all the
models and learning rates of 1e� 02, 1e� 04, 5e� 04 for the
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This section shows the obtained results from simulations of
our proposed privacy-preserving image captioning approach
over the COCO test set. In general, visual privacy methods
are not well explored in the literature. Therefore, to com-
pare our method, we adapt the ideas of using low-resolution
cameras [14] and cameras with a defocus lens [15] to provide
visual privacy protection. Specifically, we change the encoder
in our proposed end-to-end architecture (Fig. 1) with a low-
resolution camera, which resizes the input image to 16 ⇥ 16
pixels, and a defocus lens, respectively.
Qualitative Results. Figure 3 shows a visual comparison of
our proposed method using the optimized lens against from
defocus lens and low-resolution cameras. The figure shows
the image and caption outputs of each model. Additionally,
we compute and show the PSNR between the original and
distorted images by different approaches. As observed, in all
approaches, the content of the images cannot be easily recog-
nized; however, our method achieves the best description of
the scene and, as expected, minimum PSNR.
To quantitatively evaluate our proposed approach, we use
the standard BLEU [19] and Meteor metrics. BLEU-1,2,3,4
scores (values between 0 and 1) indicate how similar the can-
didate text is to the reference texts, with values closer to 1
representing more similar texts. The indexes {1,2,3,4} denote
the evaluation of the precision for a contiguous sequence of ñ
items from a given sample (ñ-grams), where ñ 2 {1, · · · , 4}.
Meteor metric [20] scores output captions model by aligning
them to a set of references. Alignments are based on exact,
synonym, and paraphrase matches among words and phrases.
Quantitative Results. Table 1 shows the quantitative re-
sults where we compare our model against the following
non-privacy methods, i.e., these methods use cameras with
standard lens: BRNN [16], Google NIC [2], Cutmix [17],
AAIC [18], the LSTM network model Hard-Attention [1],
2PSC-w (our proposed model without the optimized lens).
This table also provides a quantitative comparison with the
privacy methods explained above: defocus and low-resolution
cameras. The bold values in Table 1 represent the best re-

2.2.2. LSTM network

Similar than the work proposed by Kelvin et.al. [1], we use
LSTM network with attention to generate a caption by com-
puting one word at each time step t conditioned on a context
vector ẑt, the previous hidden state ht�1, and the previously
generated word vt�1. The context vector ẑt is a dynamic rep-
resentation of the most important part of the image at time t
and is obtained from the feature vectors ai, and a function  
with parameters ✓t, i.e., ẑt =  (a1, · · · , aL;✓t).The LSTM
network can be described as
it = � (WiEvt�1 +Uiht�1 +Qiẑt + bi) ,

ft = � (WfEvt�1 +Ufht�1 +Qf ẑt + bf ) ,

ct = ftct�1 + it tanh (WcEvt�1 +Ucht�1 +Qcẑt + bc) ,

ot = � (WoEvt�1 +Uoht�1 +Qoẑt + bo) ,

ht = ot tanh (ct) ,

where it, ft, ct, ot, and ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. Additionally,
the Ws,Us,Qs 2 Rn⇥m terms denote learned weight matri-
ces and the bs 2 Rn terms denote bias vectors. The sub-index
s = {i, f, c, o} indicates which variable is computed from the
learned matrices and biases (e.g., Ui is used to compute the
input). E 2 Rm⇥K is the embedding matrix, m and n denote
the embedding and LSTM dimensionality, respectively, and
K is the vocabulary size. � is the logistic sigmoid activation
and tanh(·) represents hyperbolic tangent activation function.
For more details, we refer the interested reader to [1].

2.3. Loss Function
Two important aspects were considered to find an appropriate
cost function for our approach. The first is maintaining the
visual image distortion, and the second is the performance at
word generation. Then, our loss function is defined as:
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where C represents the length of the caption, g 2 RC repre-
sents the ground truth caption, and J is the total image pixels
for all channels. The first two terms are a doubly stochastic
regularization to encourage the model to pay equal attention
to every part of the blurred image [1]. The third term is the
multi-class cross-entropy loss to generate a correct sequence
of words. The last term uses the mean squared error to max-
imize the difference between original X` and sensor Y` im-
ages to achieve private images.

2.4. Training details
We used the Common Objects in Context (COCO) 2014
dataset [13] for training (83K images), validation (41K im-
ages), and testing (41K images). We trained our end-to-end
model on an Nvidia Geforce RTX 3090 during 90 epochs and
a batch size of 32. We used the Adam optimizer in all the
models and learning rates of 1e� 02, 1e� 04, 5e� 04 for the
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3. RESULTS
This section shows the obtained results from simulations of
our proposed privacy-preserving image captioning approach
over the COCO test set. In general, visual privacy methods
are not well explored in the literature. Therefore, to com-
pare our method, we adapt the ideas of using low-resolution
cameras [14] and cameras with a defocus lens [15] to provide
visual privacy protection. Specifically, we change the encoder
in our proposed end-to-end architecture (Fig. 1) with a low-
resolution camera, which resizes the input image to 16 ⇥ 16
pixels, and a defocus lens, respectively.
Qualitative Results. Figure 3 shows a visual comparison of
our proposed method using the optimized lens against from
defocus lens and low-resolution cameras. The figure shows
the image and caption outputs of each model. Additionally,
we compute and show the PSNR between the original and
distorted images by different approaches. As observed, in all
approaches, the content of the images cannot be easily recog-
nized; however, our method achieves the best description of
the scene and, as expected, minimum PSNR.
To quantitatively evaluate our proposed approach, we use
the standard BLEU [19] and Meteor metrics. BLEU-1,2,3,4
scores (values between 0 and 1) indicate how similar the can-
didate text is to the reference texts, with values closer to 1
representing more similar texts. The indexes {1,2,3,4} denote
the evaluation of the precision for a contiguous sequence of ñ
items from a given sample (ñ-grams), where ñ 2 {1, · · · , 4}.
Meteor metric [20] scores output captions model by aligning
them to a set of references. Alignments are based on exact,
synonym, and paraphrase matches among words and phrases.
Quantitative Results. Table 1 shows the quantitative re-
sults where we compare our model against the following
non-privacy methods, i.e., these methods use cameras with
standard lens: BRNN [16], Google NIC [2], Cutmix [17],
AAIC [18], the LSTM network model Hard-Attention [1],
2PSC-w (our proposed model without the optimized lens).
This table also provides a quantitative comparison with the
privacy methods explained above: defocus and low-resolution
cameras. The bold values in Table 1 represent the best re-

2.2.2. LSTM network

Similar than the work proposed by Kelvin et.al. [1], we use
LSTM network with attention to generate a caption by com-
puting one word at each time step t conditioned on a context
vector ẑt, the previous hidden state ht�1, and the previously
generated word vt�1. The context vector ẑt is a dynamic rep-
resentation of the most important part of the image at time t
and is obtained from the feature vectors ai, and a function  
with parameters ✓t, i.e., ẑt =  (a1, · · · , aL;✓t).The LSTM
network can be described as
it = � (WiEvt�1 +Uiht�1 +Qiẑt + bi) ,

ft = � (WfEvt�1 +Ufht�1 +Qf ẑt + bf ) ,

ct = ftct�1 + it tanh (WcEvt�1 +Ucht�1 +Qcẑt + bc) ,

ot = � (WoEvt�1 +Uoht�1 +Qoẑt + bo) ,

ht = ot tanh (ct) ,

where it, ft, ct, ot, and ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. Additionally,
the Ws,Us,Qs 2 Rn⇥m terms denote learned weight matri-
ces and the bs 2 Rn terms denote bias vectors. The sub-index
s = {i, f, c, o} indicates which variable is computed from the
learned matrices and biases (e.g., Ui is used to compute the
input). E 2 Rm⇥K is the embedding matrix, m and n denote
the embedding and LSTM dimensionality, respectively, and
K is the vocabulary size. � is the logistic sigmoid activation
and tanh(·) represents hyperbolic tangent activation function.
For more details, we refer the interested reader to [1].

2.3. Loss Function
Two important aspects were considered to find an appropriate
cost function for our approach. The first is maintaining the
visual image distortion, and the second is the performance at
word generation. Then, our loss function is defined as:
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where C represents the length of the caption, g 2 RC repre-
sents the ground truth caption, and J is the total image pixels
for all channels. The first two terms are a doubly stochastic
regularization to encourage the model to pay equal attention
to every part of the blurred image [1]. The third term is the
multi-class cross-entropy loss to generate a correct sequence
of words. The last term uses the mean squared error to max-
imize the difference between original X` and sensor Y` im-
ages to achieve private images.

2.4. Training details
We used the Common Objects in Context (COCO) 2014
dataset [13] for training (83K images), validation (41K im-
ages), and testing (41K images). We trained our end-to-end
model on an Nvidia Geforce RTX 3090 during 90 epochs and
a batch size of 32. We used the Adam optimizer in all the
models and learning rates of 1e� 02, 1e� 04, 5e� 04 for the
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optical encoder, the feature extraction layers of the decoder,
and the LSTM network, respectively.

3. RESULTS
This section shows the obtained results from simulations of
our proposed privacy-preserving image captioning approach
over the COCO test set. In general, visual privacy methods
are not well explored in the literature. Therefore, to com-
pare our method, we adapt the ideas of using low-resolution
cameras [14] and cameras with a defocus lens [15] to provide
visual privacy protection. Specifically, we change the encoder
in our proposed end-to-end architecture (Fig. 1) with a low-
resolution camera, which resizes the input image to 16 ⇥ 16
pixels, and a defocus lens, respectively.
Qualitative Results. Figure 3 shows a visual comparison of
our proposed method using the optimized lens against from
defocus lens and low-resolution cameras. The figure shows
the image and caption outputs of each model. Additionally,
we compute and show the PSNR between the original and
distorted images by different approaches. As observed, in all
approaches, the content of the images cannot be easily recog-
nized; however, our method achieves the best description of
the scene and, as expected, minimum PSNR.
To quantitatively evaluate our proposed approach, we use
the standard BLEU [19] and Meteor metrics. BLEU-1,2,3,4
scores (values between 0 and 1) indicate how similar the can-
didate text is to the reference texts, with values closer to 1
representing more similar texts. The indexes {1,2,3,4} denote
the evaluation of the precision for a contiguous sequence of ñ
items from a given sample (ñ-grams), where ñ 2 {1, · · · , 4}.
Meteor metric [20] scores output captions model by aligning
them to a set of references. Alignments are based on exact,
synonym, and paraphrase matches among words and phrases.
Quantitative Results. Table 1 shows the quantitative re-
sults where we compare our model against the following
non-privacy methods, i.e., these methods use cameras with
standard lens: BRNN [16], Google NIC [2], Cutmix [17],
AAIC [18], the LSTM network model Hard-Attention [1],
2PSC-w (our proposed model without the optimized lens).
This table also provides a quantitative comparison with the
privacy methods explained above: defocus and low-resolution
cameras. The bold values in Table 1 represent the best re-

Attention <             >

12



Loss Function

2.2.2. LSTM network

Similar than the work proposed by Kelvin et.al. [1], we use
LSTM network with attention to generate a caption by com-
puting one word at each time step t conditioned on a context
vector ẑt, the previous hidden state ht�1, and the previously
generated word vt�1. The context vector ẑt is a dynamic rep-
resentation of the most important part of the image at time t
and is obtained from the feature vectors ai, and a function  
with parameters ✓t, i.e., ẑt =  (a1, · · · , aL;✓t).The LSTM
network can be described as
it = � (WiEvt�1 +Uiht�1 +Qiẑt + bi) ,

ft = � (WfEvt�1 +Ufht�1 +Qf ẑt + bf ) ,

ct = ftct�1 + it tanh (WcEvt�1 +Ucht�1 +Qcẑt + bc) ,

ot = � (WoEvt�1 +Uoht�1 +Qoẑt + bo) ,

ht = ot tanh (ct) ,

where it, ft, ct, ot, and ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. Additionally,
the Ws,Us,Qs 2 Rn⇥m terms denote learned weight matri-
ces and the bs 2 Rn terms denote bias vectors. The sub-index
s = {i, f, c, o} indicates which variable is computed from the
learned matrices and biases (e.g., Ui is used to compute the
input). E 2 Rm⇥K is the embedding matrix, m and n denote
the embedding and LSTM dimensionality, respectively, and
K is the vocabulary size. � is the logistic sigmoid activation
and tanh(·) represents hyperbolic tangent activation function.
For more details, we refer the interested reader to [1].

2.3. Loss Function
Two important aspects were considered to find an appropriate
cost function for our approach. The first is maintaining the
visual image distortion, and the second is the performance at
word generation. Then, our loss function is defined as:
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where C represents the length of the caption, g 2 RC repre-
sents the ground truth caption, and J is the total image pixels
for all channels. The first two terms are a doubly stochastic
regularization to encourage the model to pay equal attention
to every part of the blurred image [1]. The third term is the
multi-class cross-entropy loss to generate a correct sequence
of words. The last term uses the mean squared error to max-
imize the difference between original X` and sensor Y` im-
ages to achieve private images.

2.4. Training details
We used the Common Objects in Context (COCO) 2014
dataset [13] for training (83K images), validation (41K im-
ages), and testing (41K images). We trained our end-to-end
model on an Nvidia Geforce RTX 3090 during 90 epochs and
a batch size of 32. We used the Adam optimizer in all the
models and learning rates of 1e� 02, 1e� 04, 5e� 04 for the
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3. RESULTS
This section shows the obtained results from simulations of
our proposed privacy-preserving image captioning approach
over the COCO test set. In general, visual privacy methods
are not well explored in the literature. Therefore, to com-
pare our method, we adapt the ideas of using low-resolution
cameras [14] and cameras with a defocus lens [15] to provide
visual privacy protection. Specifically, we change the encoder
in our proposed end-to-end architecture (Fig. 1) with a low-
resolution camera, which resizes the input image to 16 ⇥ 16
pixels, and a defocus lens, respectively.
Qualitative Results. Figure 3 shows a visual comparison of
our proposed method using the optimized lens against from
defocus lens and low-resolution cameras. The figure shows
the image and caption outputs of each model. Additionally,
we compute and show the PSNR between the original and
distorted images by different approaches. As observed, in all
approaches, the content of the images cannot be easily recog-
nized; however, our method achieves the best description of
the scene and, as expected, minimum PSNR.
To quantitatively evaluate our proposed approach, we use
the standard BLEU [19] and Meteor metrics. BLEU-1,2,3,4
scores (values between 0 and 1) indicate how similar the can-
didate text is to the reference texts, with values closer to 1
representing more similar texts. The indexes {1,2,3,4} denote
the evaluation of the precision for a contiguous sequence of ñ
items from a given sample (ñ-grams), where ñ 2 {1, · · · , 4}.
Meteor metric [20] scores output captions model by aligning
them to a set of references. Alignments are based on exact,
synonym, and paraphrase matches among words and phrases.
Quantitative Results. Table 1 shows the quantitative re-
sults where we compare our model against the following
non-privacy methods, i.e., these methods use cameras with
standard lens: BRNN [16], Google NIC [2], Cutmix [17],
AAIC [18], the LSTM network model Hard-Attention [1],
2PSC-w (our proposed model without the optimized lens).
This table also provides a quantitative comparison with the
privacy methods explained above: defocus and low-resolution
cameras. The bold values in Table 1 represent the best re-
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2.2.2. LSTM network

Similar than the work proposed by Kelvin et.al. [1], we use
LSTM network with attention to generate a caption by com-
puting one word at each time step t conditioned on a context
vector ẑt, the previous hidden state ht�1, and the previously
generated word vt�1. The context vector ẑt is a dynamic rep-
resentation of the most important part of the image at time t
and is obtained from the feature vectors ai, and a function  
with parameters ✓t, i.e., ẑt =  (a1, · · · , aL;✓t).The LSTM
network can be described as
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where it, ft, ct, ot, and ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. Additionally,
the Ws,Us,Qs 2 Rn⇥m terms denote learned weight matri-
ces and the bs 2 Rn terms denote bias vectors. The sub-index
s = {i, f, c, o} indicates which variable is computed from the
learned matrices and biases (e.g., Ui is used to compute the
input). E 2 Rm⇥K is the embedding matrix, m and n denote
the embedding and LSTM dimensionality, respectively, and
K is the vocabulary size. � is the logistic sigmoid activation
and tanh(·) represents hyperbolic tangent activation function.
For more details, we refer the interested reader to [1].

2.3. Loss Function
Two important aspects were considered to find an appropriate
cost function for our approach. The first is maintaining the
visual image distortion, and the second is the performance at
word generation. Then, our loss function is defined as:
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where C represents the length of the caption, g 2 RC repre-
sents the ground truth caption, and J is the total image pixels
for all channels. The first two terms are a doubly stochastic
regularization to encourage the model to pay equal attention
to every part of the blurred image [1]. The third term is the
multi-class cross-entropy loss to generate a correct sequence
of words. The last term uses the mean squared error to max-
imize the difference between original X` and sensor Y` im-
ages to achieve private images.

2.4. Training details
We used the Common Objects in Context (COCO) 2014
dataset [13] for training (83K images), validation (41K im-
ages), and testing (41K images). We trained our end-to-end
model on an Nvidia Geforce RTX 3090 during 90 epochs and
a batch size of 32. We used the Adam optimizer in all the
models and learning rates of 1e� 02, 1e� 04, 5e� 04 for the
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Table 1: Comparisons on the COCO test set. B-# denotes the Bleu
metrics, and M is the Meteor metric. Results with (-) were not re-
ported by authors in the corresponding papers.
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3. RESULTS
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are not well explored in the literature. Therefore, to com-
pare our method, we adapt the ideas of using low-resolution
cameras [14] and cameras with a defocus lens [15] to provide
visual privacy protection. Specifically, we change the encoder
in our proposed end-to-end architecture (Fig. 1) with a low-
resolution camera, which resizes the input image to 16 ⇥ 16
pixels, and a defocus lens, respectively.
Qualitative Results. Figure 3 shows a visual comparison of
our proposed method using the optimized lens against from
defocus lens and low-resolution cameras. The figure shows
the image and caption outputs of each model. Additionally,
we compute and show the PSNR between the original and
distorted images by different approaches. As observed, in all
approaches, the content of the images cannot be easily recog-
nized; however, our method achieves the best description of
the scene and, as expected, minimum PSNR.
To quantitatively evaluate our proposed approach, we use
the standard BLEU [19] and Meteor metrics. BLEU-1,2,3,4
scores (values between 0 and 1) indicate how similar the can-
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where C represents the length of the caption, g 2 RC repre-
sents the ground truth caption, and J is the total image pixels
for all channels. The first two terms are a doubly stochastic
regularization to encourage the model to pay equal attention
to every part of the blurred image [1]. The third term is the
multi-class cross-entropy loss to generate a correct sequence
of words. The last term uses the mean squared error to max-
imize the difference between original X` and sensor Y` im-
ages to achieve private images.

2.4. Training details
We used the Common Objects in Context (COCO) 2014
dataset [13] for training (83K images), validation (41K im-
ages), and testing (41K images). We trained our end-to-end
model on an Nvidia Geforce RTX 3090 during 90 epochs and
a batch size of 32. We used the Adam optimizer in all the
models and learning rates of 1e� 02, 1e� 04, 5e� 04 for the
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3. RESULTS
This section shows the obtained results from simulations of
our proposed privacy-preserving image captioning approach
over the COCO test set. In general, visual privacy methods
are not well explored in the literature. Therefore, to com-
pare our method, we adapt the ideas of using low-resolution
cameras [14] and cameras with a defocus lens [15] to provide
visual privacy protection. Specifically, we change the encoder
in our proposed end-to-end architecture (Fig. 1) with a low-
resolution camera, which resizes the input image to 16 ⇥ 16
pixels, and a defocus lens, respectively.
Qualitative Results. Figure 3 shows a visual comparison of
our proposed method using the optimized lens against from
defocus lens and low-resolution cameras. The figure shows
the image and caption outputs of each model. Additionally,
we compute and show the PSNR between the original and
distorted images by different approaches. As observed, in all
approaches, the content of the images cannot be easily recog-
nized; however, our method achieves the best description of
the scene and, as expected, minimum PSNR.
To quantitatively evaluate our proposed approach, we use
the standard BLEU [19] and Meteor metrics. BLEU-1,2,3,4
scores (values between 0 and 1) indicate how similar the can-
didate text is to the reference texts, with values closer to 1
representing more similar texts. The indexes {1,2,3,4} denote
the evaluation of the precision for a contiguous sequence of ñ
items from a given sample (ñ-grams), where ñ 2 {1, · · · , 4}.
Meteor metric [20] scores output captions model by aligning
them to a set of references. Alignments are based on exact,
synonym, and paraphrase matches among words and phrases.
Quantitative Results. Table 1 shows the quantitative re-
sults where we compare our model against the following
non-privacy methods, i.e., these methods use cameras with
standard lens: BRNN [16], Google NIC [2], Cutmix [17],
AAIC [18], the LSTM network model Hard-Attention [1],
2PSC-w (our proposed model without the optimized lens).
This table also provides a quantitative comparison with the
privacy methods explained above: defocus and low-resolution
cameras. The bold values in Table 1 represent the best re-
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Qualitative Results

an elderly man looks at a 
cell phone

an old man looks at a cell 
phone screen 

Original Image Sensor Image

Not-private Private
PSNR = 8.921
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Qualitative Results

two children standing at the
sink brushing their teeth 

a little girl is brushing her 
teeth in a bathroom

Original Image Sensor Image

Not-private Private
PSNR = 11.036
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Qualitative Results

a man sitting at a table in a 
wheelchair while on a phone

a person in a wheelchair
talking on a telephone 

Original Image Sensor Image

Not-private Private
PSNR = 9.150
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Ablation Studies
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Ablation Studies
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Quantitative Results

2PSC (ours) 70.7 53.5 39.4 28.9 29.0

Defocus 56.1 36.7 24.2 16.3 20.4

Low-Resolution 57.3 37.8 25.2 17.4 20.9

BRNN [1] 64.2 45.1 30.3 20.1 19.5

NIC [2] 66.6 46.1 32.9 24.6 23.7

CutMix [3] 64.2 - - 24.9 23.1

AAIC [4] 71.0 - - 27.7 23.8

Hard Attn [5] 71.8 50.4 35.7 25.0 23.0

2PSC-w (ours) 72.1 54.8 40.4 29.6 29.2
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Privacy Validation

[3] Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kotsia, and Stefanos Zafeiriou,
“Retinaface: Single-shot multi-level face localisation in the wild,” in EEE/CVF CVPR,
2020, pp. 5203–5212.

pixel-wise face localisation on various scales of faces
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Privacy Validation

1. Non-privacy: We trained the face 
detection model from scratch with 
original images resized.

2. Training: We trained the face 
detection model from scratch using 
blurred images.

3. Pre-trained: We evaluated the 
previous experiment (Non-privacy) 
on distorted images.

4. Fine-tuning: We perform fine-
tuning on the Non-privacy 
experiment using the blurred 
images.
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Privacy Validation
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Conclusions

• We propose an image captioning model based on attention, which promotes 
privacy of the input images, causing a blurred visual effect on them.

• The people, objects, and places involved in the input images can be 
reserved. 

• We maintain high performance on the BLEU metric with the COCO dataset 
despite visual distortion. 

• We trained a face detector on our private images to validate our method’s 
effectiveness.



Thank you!
Any questions?


