Optics Lens Design for Privacy-Preserving Scene Captioning

Paula Arguello

Jhon Lopez

Carlos Hinojosa

Henry Arguello

Universidad Industrial de Santander

Processing Research Group

Image Captioning

a man that is next to a child with bread

a large giraffe standing next to a forest people are playing volleyball on the sandy beach

Related Problem

Certain images may include content that should be private. Sensitive content: Faces, Medical Eviroments, Elders, Toddlers.

a baby is eating a piece of cake

Private

a toddler is eating a cake

Private

Let's perform image captioning!

Traditional Approaches

Traditional camera Image Caption Network Scene Output А baby \mathbf{h}_t holding LSTM Cell а toolbrush in Captions \mathbf{V}_{t} its {a woman sitting on a bench mouth with a cellphone}; ... ; {a man

Training Images

walking away from a tennis court in front of a laptop}

Proposed Method

Training Images Scene Privacy Input Decoder Encoder Output Α **Attention Module** 101-Resnet baby \mathbf{h}_t holding а LSTM toolbrush Cell in Captions its \mathbf{v}_t {a woman sitting on a bench mouth with a cellphone}; ... ; {a man \mathbf{X}_{c} \mathbf{Y}_{c} walking away from a tennis ϕ \mathbf{V} court in front of a laptop}

Backward Pass

Surface Profile

* We learn α_j

We optimize the PSF by learning to add optical aberrations to the system.

[1] Carlos Hinojosa, Juan Carlos Niebles, Henry Arguello; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 2573-2582

Decoder

[2] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio, "Show, attend and tell: Neural image caption generation with visual attention," in ICML. PMLR, 2015, pp. 2048–2057.

Decoder: Recurrent Neural Network

Decoder: Recurrent Neural Network

- \mathbf{f}_t Forget
- \mathbf{c}_t Memory
- \mathbf{o}_t Output
- \mathbf{h}_t Hidden

Loss Function

$$\mathcal{L} = -\log(p(\mathbf{v} \mid \mathcal{A})) + \lambda \sum_{i=1}^{L} \left(1 - \sum_{t=1}^{C} \boldsymbol{\theta}_{ti}\right)^{2} - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_{c})}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_{i}\right)} \mathbf{g}_{c} + \left(1 - \frac{1}{J} \sum_{l=1}^{3} \|\mathbf{Y}_{\ell} - \mathbf{X}_{\ell}\|^{2}\right),$$

Doubly stochastic regularization Multi-class cross-entropy loss Mean squared error

Qualitative Results

•

Original Image

an elderly man looks at a cell phone

Sensor Image

an old man looks at a cell phone screen

Qualitative Results

()

Original Image

two children standing at the sink brushing their teeth

Sensor Image

a little girl is brushing her teeth in a **bathroom**

Qualitative Results

Original Image

a man sitting at a table in a wheelchair while on a phone

I) Private

a person in a wheelchair talking on a telephone

Ablation Studies

Baby boy at the table eating cake frosting off his hand A baby sitting on a table eating a cake A man and woman sitting at a table with food A baby sitting on a chair holding a remote

Ablation Studies

Quantitative Results

Non - Privacy	Model	Bleu - 1	Bleu - 2	Bleu - 3	Bleu - 4	Meteor
	BRNN [1]	64.2	45.1	30.3	20.1	19.5
	NIC [2]	66.6	46.1	32.9	24.6	23.7
	CutMix [3]	64.2	-	-	24.9	23.1
	AAIC [4]	71.0	-	-	27.7	23.8
	Hard Attn [5]	71.8	50.4	35.7	25.0	23.0
	2PSC-w (ours)	72.1	54.8	40.4	29.6	29.2
Privacy	2PSC (ours)	70.7	53.5	39.4	28.9	29.0
	Defocus	56.1	36.7	24.2	16.3	20.4
	Low-Resolution	57.3	37.8	25.2	17.4	20.9

Privacy Validation

pixel-wise face localisation on various scales of faces

[3] Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kotsia, and Stefanos Zafeiriou, "Retinaface: Single-shot multi-level face localisation in the wild," in EEE/CVF CVPR, 2020, pp. 5203–5212.

Privacy Validation

1. Non-privacy: We trained the face detection model from scratch with original images resized.

2. Training: We trained the face detection model from scratch using blurred images.

3. Pre-trained: We evaluated the previous experiment (Non-privacy) on distorted images.

4. Fine-tuning: We perform finetuning on the Non-privacy experiment using the blurred images.

Privacy Validation

Conclusions

- We propose an image captioning model based on attention, which promotes privacy of the input images, causing a blurred visual effect on them.
- The people, objects, and places involved in the input images can be reserved.
- We maintain high performance on the BLEU metric with the COCO dataset despite visual distortion.
- We trained a face detector on our private images to validate our method's effectiveness.

Thank you! Any questions?

High Dimensional Signal Processing Research Group