
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 1

Supplementary Material
Learning to Describe Scenes via Privacy-aware Designed Optical Lens

Paula Arguello, Jhon Lopez, Student Member, IEEE, Karen Sanchez, Carlos Hinojosa, Member, IEEE, Fernando
Rojas-Morales, Henry Arguello, Senior Member, IEEE

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Culture (AP=0.72)
Perfect Classifier
Random Classifier

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Age (AP=0.87)
Perfect Classifier
Random Classifier

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Weight (AP=0.56)
Perfect Classifier
Random Classifier

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Credit Card (AP=0.02)
Perfect Classifier
Random Classifier

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Occupation (AP=0.32)
Perfect Classifier
Random Classifier

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Religion (AP=0.13)
Perfect Classifier
Random Classifier

Fig. 1: Privacy attribute evaluation: Precision-recall curves of culture, age, weight, credit card, occupation, and religion
attribute recognition on the VISPR dataset private through our proposed method.

I. INTRODUCTION

This supplementary document provides additional experi-
ments, visualizations, and implementation details of our work.
Specifically, we include the following:

1) Privacy validation
• Face recognition
• VISPR protocol
• Phase recovery robustness

2) End-to-end ablation study
3) Optical diagram of the hardware implementation
4) Double-LSTM approach

II. PRIVACY VALIDATION

A. Face recognition

In addition to evaluating resistance to adversarial and fa-
cial recognition attacks, presented in section 4 of the main
manuscript, we performed additional experiments to evalu-
ate the resistance of our privacy methods against a facial

recognition network. For this proof, we use the AdaFace
network [4] and address the performance on three datasets:
the Cross-Age Labeled Faces in the Wild (CALFW) [1], the
Cross-Pose Labeled Faces in the Wild (CPLFW) [2], and the
Labeled Faces in the Wild (LFW) [3]. Those datasets contain
face images labelled with person names. The plots in Fig.
2 show that privatizing the face images with our proposed
system resulted in a decrease in average precision (AP) for
face recognition by approximately 20% across all evaluated
datasets, one per plot, compared to results using the original
face images.

B. VISPR protocol

Furthermore, we have developed additional experiments
following the VISPR protocol to address privacy concerns
related to attributes in images that can be exposed as nudity,
and skin color, among others.

In Fig. 1, we have included the average Precision-recall
curves of six different specific attributes from this experiment:
culture, age, weight, credit card, occupation, and religion. The
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Fig. 2: ROC curves for a face detection model across three datasets: CALFW [1], CPLFW [2], and LFW [3]. “Baseline”
represents the performance using standard RGB images, while “Privacy” depicts outcomes using private images distorted by
our optimized lens. Additionally, the performance of a “Random Classifier” is shown for comparison purposes.

results of this recent experiment illustrate the effectiveness of
our approach in safeguarding these attributes against potential
privacy breaches.

C. Phase-Recovery robustness

Moreover, to confirm that our method remains effec-
tive after using an iterative algorithm for phase recovery,
we conducted experiments with three recovery algorithms:
Reweighted AmpFlow (RAF) [5], Truncated AmpFlow (TAF)
[6], and Truncated Wirtinger Flow (TWF) [7]. The results,
which can be seen in Fig. 3 involve recovering each color
channel of the outcome phase of our distorted lens. As
expected, the results show that the distorted images cannot
be recovered.

Fig. 3: Qualitative and quantitative results on phase recovery
algorithms: RAF, TAF, and TWF. Below each image, the SSIM
and PSNR values are provided, comparing the original images
(Ground Truth) with the reconstructions.

III. END-TO-END ABLATION STUDIES

To further demonstrate the advantages of the end-to-end
training process, we show some experiments and results

when using a modular approach consisting of two stages:
(1) optical encoder optimization and (2) image captioning
network optimization. Specifically, in the first stage of the
modular approach, we only learn the Zernike coefficients of
our privacy-preserving lens without considering the image
captioning network and maximizing the mean square error
between the original image and the captured sensor image.
To avoid significant degradation of the lens that leads to
information loss and poor feature representation, we stop the
optimization of the optical encoder when the point spread
function (PSF) of the lens resembles the PSF obtained with
the end-to-end training approach. Once the optimization of the
first stage is finished, we train the image captioning network
using as input the privacy-preserving images provided by the
already optimized optical encoder. We present qualitative and
quantitative results with both approaches, the end-to-end (ours)
and the modular (two-stage), in Fig. 4 and Table I, respectively.
As observed from the results, learning the privacy-preserving
lens and image captioning parameters end-to-end significantly
improves the performance leading to an optical encoder which
better preserves privacy and encodes useful information from
the original scene for the image captioning network (decoder).

IV. OPTICAL DIAGRAM OF THE HARDWARE
IMPLEMENTATION

An optical diagram corresponding to the hardware setup
from Fig. 6 of the main manuscript is presented in this section.
This setup, depicted in Fig. 6, incorporates a 100 mm objective
lens to direct the input light rays, which are encoded by a
digital micromirror device (DM, Thorlabs DMP40-P01). This
device emulates the refractive lens designed by our end-to-end
method. A Fourier transforming lens (Thorlabs AC254-075-
A-ML), referred to as L1 in Fig 6, is placed at a distance
of 1f = 100 mm from the DMD. A beam splitter (BS,
Thorlabs CCM1-BS013) then redirects the wavefront-encoded
light from the DM to another Fourier transforming lens,
L2, which subsequently directs the light to the sensor for
acquisition.

V. DOUBLE-LSTM APPROACH

In this experiment, we validate our work with another
captioning network. Specifically, we have implemented a dual
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a man eating a 
hot dog on a bun

a dog laying on a 
bed with a red blanket

a young girl is 
sitting on a couch

a man holding a donut 
in his hand

a man is eating a hot dog
 while wearing a suit 

a little girl is sitting
holding a white teddy bear

Without End-to-endGround Truth End-to-end

Fig. 4: Qualitative comparison of End-to-end vs. two-stage
(without end-to-end) optimization approach. From left to right:
Ground Truth, sensor image from the optical encoder opti-
mized without end-to-end, and optical encoder trained end-to-
end (ours). Below, the corresponding Point Spread Functions
(PSF) are displayed for each approach.

a little girl sitting on 
a table with a cake 

a little girl sitting at a table 
with a cake in front of them 

a man with glasses and a tiea man who is wearing 
a suit and tie 

Ground Truth Private

Fig. 5: Qualitative results when using double LSTM as image
captioning network (decoder). The “Private” column shows the
image acquired with our optimized lens and the corresponding
image captioning result.

Objective
Lens

L1

L2

Scene

Detector

BS

200mm

DM
100mm

200m
m

100m
m

f

Fig. 6: Optical diagram of our experimental hardware setup.
In the figure, DM stands for deformable mirror and BS for
beam splitter.

LSTM architecture [8] as the decoder. In Table II, we present
results using original images (% Private) and images processed
through our optimized lens (" Private). These results include
the COCO and Flickr8k datasets for generating captions with
the dual LSTM.

The table presents image captioning metrics to demonstrate
the effectiveness of our approach across various models.
Notably, the results using the dual LSTM architecture [8]
surpass those in the main manuscript in terms of captioning
accuracy. Additionally, Fig. 5 illustrates qualitative results,
showing a comparison between the original images with their
ground truth captions and the privacy-enhanced images with
their predicted captions.
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